Category: flying
The Expert Blind Spot
Wiggins and McTighe describe the “Expert Blind Spot” in Chapter 2 and how it could impact greater student understanding. On page 46 they describe three types of “uncovering” that assist in designing and teaching for understanding to avoid forgetfulness, misconception, and lack of transfer. Select one of the ideas presented below and expand on how you could incorporate it into your current profession.
1) Uncovering student’s potential misunderstandings (through focused questions, feedback, and diagnostic assessment)
2) Uncovering the questions, issues, assumptions, and gray areas lurking underneath the black and white of surface accounts
3) Uncovering the core ideas at the heart of understanding a subject, ideas that are not obvious—and perhaps counterintuitive or baffling to the novice
While all of these are important and perhaps all required to varying proportions, I will be choosing the item (3) pertaining to uncovering core ideas.
The ‘Expert Blind Spot’ is something most people have either demonstrated or experienced. Beginning with getting instructions to make a certain recipe, driving directions, operating instructions for a device, or a lecture on how to seek happiness, most people have been subject to this form of the blind spot.
Phelan (2021) provides an example of the recipe ‘Blind Spot’.
I was teaching a class yesterday (my first session with those students) and after about 20 minutes into the class, I asked a few questions to gauge how much they knew or understand the task at hand. The result – Two students in the entire class knew the objective of the class they had registered for. The rest had no idea. Knowing that made it easy for me. I had a baseline to operate from.
I was in a conversation earlier this week about the concept of situational awareness in aviation. Upon reading a reasonable number of prior studies and results, I was slowly but surely arriving at the conclusion that situational awareness, at its core, was about perception – a human trait. Regardless of whether the individual applies it to flying or driving or waiting at a lonely bus stop, the need for being aware of your surroundings was fulfilled by the same trait, perception. In the above-mentioned conversation, the individual I was speaking to added another term – sensation. Sensing and perceiving became the core concepts of being situationally aware.
Likewise, in my profession both as a Technology Executive and as an Aviation faculty member, I realize that breaking topics down to their core ideas has been the only effective way to transfer knowledge or skill. The success of any individual who has a role to transfer knowledge or skill, in my opinion, lies entirely in how well that individual performs point (3) – i.e. breaks down topics to their core ideas – which are most often easier to communicate and entrench in a learner’s mind.
Here is an example – In teaching Project Management, one arrives at the topic of Earned Value. Earning value to novices may mean many different things. Speaking about measures such as SPI and CPI may make the instructor look really experienced and intelligent. However, it will do little to help a novice understand the subject of earning value. Instead, speaking about a project that is scoped to build the four sides of a fence, 1000 dollars for each side and four weeks to do it, frame the idea a little better.
Speaking of scenarios where the first side got built in the planned one week, and 1000 dollars was spent as planned. The project has ‘earned planned value’ for the 1000 dollars spent and 1 week elapsed. The second week went by and only half of side 2 was built and 1000 dollars was spent. The 1000 dollars failed to earn planned value and the project is now also behind schedule. Week 3 completed the remaining half of side 2 and also side 3, but only 500 dollars was spent. Time has been recovered and since the 3 sides are now complete and only 2500 dollars have been spent, they are ahead on earning planned value…. and so forth. Rarely do PMs or PM instructors teach EV in this manner.
Another way to establish and reinforce core ideas is to gravitate to workshops where students learn by doing rather than rote learning a concept.
Points (1) and (2) are equally important because they help gauge the learner and also adapt as needed to the varying needs of each learner (a concept that today has been marketed as ‘Adaptive Learning’).
References –
Huang, E. (2018). Rearview mirrors for the “expert blind spot”. Design Research in Education: A Practical Guide for Early Career Researchers, 16.
Nathan, M. J., Koedinger, K. R., & Alibali, M. W. (2001, August). Expert blind spot: When content knowledge eclipses pedagogical content knowledge. In Proceedings of the third international conference on cognitive science (Vol. 644648).
Phelan, J. (2021, March 26). Beware the Expert Blind Spot – Educate. – Medium. Medium; Educate. https://medium.com/educate-pub/beware-the-expert-blind-spot-42744dc66ba9Links to an external site.
Simulators and the Logbook
In the context of flight training the discussion of simulator time that can be logged versus not logged is an important one. There is a general argument that if the FARs do not allow the time to be logged then why spend more time in a simulator. Firstly, it is important to understand that there is a difference between “logging” and “being able to apply” those hours for credit towards the PPL. The FAA does not impose any maximums in terms of simulator (BATD, AATD, FTD) time that can be logged. However, it does place maximums of how many of those hours can be used as credit towards the PPL certificate.
The Federal Regulations indeed place certain limits on the amount of simulator time that can be counted towards flight training minimums. For example, the minimum hours needed to achieve the PPL is 40 hours. Of the 40 hours, the FAA allows for 2.5 hours to be used as credit towards the PPL using a qualifying simulator (FAR 61.109 [i][1]). Similarly, the FAA allows for 20 hours of the 40 hours required towards the instrument rating to be achieved on a simulator (FAR 61.65). If it is a Part 141 school, the allowances go up to 15% of the minimum time required (40 hours) which is 6 hours (Part 141, Appendix B (c)(3)) for the PPL. For the Part 141 school, for the Instrument Rating, the credit goes up to 25% if using a BATD, or 40% if using an AATD or FTD. While these are maximums that current regulations impose, it is a flaw to limit the use of the simulator to these numbers.
Let’s examine why.
Simulators provide a whole lot of value when it comes to flight training. The value earned is typically in terms of either reduced time to complete training or reduced cost of completing training.
Such value is better understood when it is broken down into direct value and indirect value. The direct value is in reduced cost that one pays for the simulator hours as compared to real-aircraft hours. The indirect value is even more important. Every hour spent on a simulator brings about learning in some form and eventually reduces the amount of real-aircraft time needed to complete training. Research has shown this over the years. Every iteration of training performed on the simulator leads to reduced iterations of practice that would be required in real-world aircraft. This reduction in ‘iterations’ leads to compressing training time while also reducing training costs.
The US national average to achieve a PPL is around 70-75 hours. It has been proven that blending simulator time into the training drops that number down to 55-60 hours. This is despite the fact that only 2.5 of those simulator hours can be used as credit towards the PPL (if Part 61 – or 6 hours for Part 141 schools). Even if we blended in 20 hours of simulator time and total training hours equaled 70 or 75, the cost of those 20 hours in a simulator is far lower than in a real-world aircraft. Given a simulator’s ability to pause, re-position, and restart scenarios at the press of a button, the number of practice iterations that can be conducted in a 90-minute slot is much higher than in a real-world aircraft.
As with anything, there is always another perspective. Ask an experienced CFI (and I did ask more than one), and one of the responses was “…personally I think PPL students need time in the airplane to learn to ‘feel’ the airplane”.
That said, there are a lot of areas in flight training that don’t require running a real-world aircraft to achieve that training. To name a few – understanding the workings of the GPS onboard an aircraft, practicing procedure under instrument failures, pattern entry, runway or taxiway markings, airspace entry and avoidance, engine-out scenarios, getting visual feedback of the rectangular pattern, descent procedures, VOR workings, DG or HSI use, and autopilot use.
Once again, most experienced CFI’s would argue that a simulator can certainly introduce an instrument failure to a student on the sim, but it’s a totally different feeling when you’re in an airplane and you lose an attitude indicator in the clouds. The CFI view on this is that simulators miss out the emotion where “suddenly the body is fighting what the eyes are telling the brain, leading you to put the airplane into a position you didn’t intend to…. it’s very hard to simulate that sensory illusion”. Another CFI went on to add about engine failures… “there’s a much different feeling you get in your gut when you’re running out of airspeed, you’re getting low and you suddenly realize you didn’t plan your approach well to the field or runway in a real airplane…”. He believes that a sim will teach the procedure and enhances skill, but the airplane combines procedure, skill, and adds the element of inherent discomfort that goes with being in that situation without having a ‘pause’ button to press.
There is no taking away that there is a lot of teaching and learning that comes out of experiencing the imperfections of the machine.
On the contrary, the ability to experience a solo cross-country flight before it is undertaken in real-world aircraft, in certain weather conditions, and across uneven terrain gets the flying brain engaged. Building muscle memory around checklist use and proper sequence of actions in the cockpit can all be accomplished better in a simulator and help get prepared for a check-ride at much lower cost.
CFI’s agree that simulators have come a long way over the years. What this means is that the industry needs to adopt balance. It also means that there is not a ‘one size fit all’ approach. For the PPL, real-world stick time is essential to some extent. For any of the follow-on certifications, a simulator is absolutely viable and essential.
The idea till now has been that a PPL student gets 2.5 hours of value (or 6 hours as the case may be) from the simulator and the rest has to happen within a real-world aircraft. Simulators have advanced significantly over the decades. The time has come for this idea to be flipped, within limits of course, as indicated before. It may be completely possible for flight training curriculums to aim to perform the FAA-prescribed minimum time (40 minus the 2.5) in a real-world aircraft and perform the rest of the training on a simulator. Going by the national average, this would amount to 35 hours of real-world aircraft time being substituted by a simulator. Savings that quickly adds up to 3500-4000 dollars!
Hence, the next time you have access to a simulator make the most of it. If you do not have access to a simulator, make sure to find a location that has one. When in a simulator, use it to practice those aspects of flight training such as the use of the GPS that you won’t have the time or attention to work on while in a real-world training aircraft.
Simulators are time and cost compressors. Make the most of them when they are available. Do not limit your use of the simulator to maximums prescribed by the FARs. Remember, the time may not all qualify for the credit, but every hour spent on the simulator reduces your real-world aircraft time and your costs.
Aviation Moment
Instrument Rating
The instrument rating is a great addition to a pilot’s skill set. However, it’s also a challenging rating to achieve. That said, just the knowledge prep for the written test provides immense learning and makes one a much better pilot. The fundamental shift is in the level of precision that it teaches a pilot which then tends to become second nature to the individual – whether they are flying with visual references or with reference to instruments.
A shift in roles for technology
Simulators in aviation began as a training device. They were setup to help train pilots fly flying machines (as they were called in the early days of aviation). They had a role to play.
Fast forward a century…. the same technology (more advanced, no doubt!) is now used to design and test the very machine that it was to help train people for.
Flight simulators have come a long way in their evolution. This is a classic example of how the role for technology can shift 180 degrees with time. The accuracy of flight models on modern simulators is astounding. I have had the opportunity to measure and compare distinct performance parameters between real-world aircraft and a few different models of aviation training devices, and the coherence of software models to the real-world object is so precise. The picture below is an example of such a comparison. It is hard to tell which one is the real thing. Stall performance, fuel burn, climb and descent profiles, lift modeling are accurately engineered.
Instructing a computer to do all this through programming is very valuable. The next generation of this evolution has the machine learning by itself, and beyond that telling the human what to do. Indeed a powerful sequence of outcomes.
Thanks,
CP Jois
Technology and Flight Simulators
Technology, in the form of flight simulators, has changed the fundamentals of flight training.
My introduction to flight simulators dates back to 1984 with Microsoft’s Flight Simulator 2, running on an IBM PC XT. What began by chance, soon turned into a hobby, then a deep passion, and now an integral part of my purpose. The impact that this technology can have on aviation safety and pilot proficiency is immense. As described in one of my writings, when coupled with Machine Learning, this impact can be taken to a new level altogether.
While the earliest reference to a flight simulator, the ‘Sanders Teacher’, dates back to 1910 (Flight, 1910), the use of technology in flight training has increased dramatically over the years.
This image indicates an early flight simulator from 1910, the Antoinette Trainer (Flight, 1910)
Flight simulator fidelity is a multi-dimensional topic. However, visuals, touch and feel are perhaps the more dominant three. The decreasing costs of computational hardware and display technology allowed for the introduction and rapid rise of new genres of simulators that were also more affordable. These flight simulators have changed the flight training landscape. Coupled with projectors or LED TVs, the levels of visual immersion is so rich that one has to experience it to believe it.
The image below shows a comparison between the graphics of Flight Simulator 2 from around 1985 to 210 degrees of triple-channel surround projector vision built as a hobby project from about 4 years ago. It is even better now with HD projectors. The FS 2 picture actually comes from running that product on a DOS-emulator about 4-5 years ago. Hence I don’t think it looked even half as good as that back in 1985!
Not so long ago, even the very best simulators would use collimated displays where visual detail was grainy and barely sufficed. Today, even low-end basic aviation training devices come with high-quality displays that provide rich visual detail.
How technology changes everything….
Over 35 years that i have been involved with simulator technology, the flight simulator and flight training landscape has changed completely. While formal airline training programs in commercial aviation use these routinely, I find that there is tremendous opportunity in General Aviation (GA) space (for those not familiar with term, GA is everything that is not commercial air transport). In fact, the value is even higher in the GA realm given frequency of flight, long periods of time between recurrent certification and the costs aircraft use.
The potential for simulators in this realm is not fully tapped yet and presents a unique opportunity.
CP Jois
Aviation History – Doppler Navigation
Technology has become deeply pervasive in most aspects of human life. While most of us eagerly look for the next iteration of technology change (and I do too!), following the historical evolution of technology is an equally enriching endeavor. I constantly look for vintage aviation parts to add to my collection. One of my recent finds was this sub-component (162C-1) of the larger Doppler Navigation System built in 1959 by Collins Radio.
Austrian physicist Christian Doppler, described the Doppler effect back in 1842. While there are many uses for the Doppler phenomenon, one of its important uses was in airspace navigation. By the late 1940s Doppler use for navigation had become near-ready. Airborne Doppler worked by transmitting radio waves in 3 or 4 directions towards the ground. The reflections from the ground would be measured. The 3 or 4 reflection returns would be integrated to derive many different measures such as ground speed, wind velocity and track.
A collector’s edition of the Collins Radio 1959 catalog confirms that the 162C-1 was the control panel to the DN-103 Doppler Navigation Computer System which integrated with the DN-101 Doppler Navigation Radar System. Early use in aviation, which traces back to the 1960-1961 timeframe, was on the Boeing 707s. The promise of this breakthrough technology was to allow pilots to fly the most direct path possible saving flight time and fuel.
Our history is replete with examples of building blocks of invention which when fueled with an innovative mindset led to more powerful solutions. Radio had been associated with messaging, and audio broadcast. Not many would have thought of radio waves to be of use in measuring key parameters of a fast-moving transport, let alone have imagined its use in integrating information to improve air navigation. We also need to remember that there was no digital computer to integrate all this information… this task was left to analog computers of that day.
Here is a picture of that piece of history…
Aviation Moment
United 747-400: November 2004
Pilot Training and Software Engineering
Pilot training focuses significantly on human factors. I strongly believe that this aspect is critical to every realm. It’s just that not all of them grant it as much focus as some industries do.
Software is more pervasive today than it has ever been. Just about everything in our lives has some element of software. It wouldn’t be that much of a stretch to state that few, if any, aspects of human life remain untouched by software code. This translated to higher stakes and increased risk from a software engineering perspective. Over the past decades, software has gone from helping with back-end data processing (remember EDP?) to real-time data streams; from supporting passive payroll processing to quadruple redundancy avionics and active-autonomous transport. That’s a big leap indeed.
However, when we think about software engineering methods, tools, and the inherent cognitive nature of software, much of it still relies on what we started with – the most important one being the human element. Software teams need to be trained to look at evolving complexity, character and impact of the software they build. However good the tools, the engineering or quality assurance methods, human factors will make the difference between success and failure.