Aviation Human Factors and Prospective Memory

Prospective memory is an emerging area of research within the field of Cognitive Psychology and Human Factors. Remembering to perform intended actions can be critical, especially in safety-related occupations like Air Traffic Control.

Failures in prospective memory (PM) are the reason why we fail to perform intended or required actions. There is increasing interest in the topic of prospective memory and the reasons for failures of such memory. While this subject is still under intense debate, according to one school of thought, prospective memory recall is driven by the process of monitoring. Another view is that it occurs as part of spontaneous retrieval. In either case, the intention for the planned task is retrieved which then allows for action. Distractions are one source of why action is forgotten.

Interruptions of any kind can be a cause (Shorrock, 2005; Sternberg & Sternberg, 2016). A telephone call or request for information can be sufficient cause to not return back to the ongoing task. The variety of peripheral tasks that controllers need to perform often conflict with the primary task of maintaining separation. Such tasks could include scanning displays, accepting aircraft, gathering and relaying weather advisories and responding to pilot requests.

Prospective memory recall is predicated on cues. A cue or trigger is necessary for prospective memory to work. As described earlier, to recall the intent, the human mind constantly polls for such items. When polling is not invested in, such as when we are preoccupied with other task(s), then the intent is not recalled and action is termed as ‘forgotten’. Under another school of thought, spontaneous retrieval occurs on account of a system within our brain that causes automatic retrieval of items at the appropriate times. Once again, when tasks preoccupy, spontaneity drops and we tend to forget the intent. Proximity, recency and task regularity could all affect prospective memory (Vortac, Edwards & Manning, 1995).

In the context of ATC, prospective memory failures can prove to be catastrophic. The incident at San Francisco of a controller positioning an aircraft on the runway for takeoff, forgetting about it, and further clearing an aircraft to land on the same runway is a case in point (Loft, 2014). They can affect controller actions such as separation, scope monitoring or performing other tasks such as flight strip updates, aircraft transfer, peer collaboration and shift transitions. Inaccurate recall of information on a strip, failing to observe conflicts and failure to annotate strips correctly are all examples of PM failures. Controllers may intend correctly but then fail to follow through on that thinking because they simply “forgot to do so”. In the realm of ATC, cues are either based on time or based on events (Loft, 2014; McDaniel & Einstein, 2007). However, monitoring takes a cost in the form of “brain cycles” and therefore impacts performance. Such impacts could come in the form of slowing down a certain action in order to devote time to monitoring.

External cues are an effective way to mitigate the risks of prospective memory failure (Vortac & Edwards, 1995). Memory aids are useful and can be any tool, prop or other aid that could serve as a reminder (FAA Video, 2015). They need to be incorporated into the routine though and not be ad-hoc. Mnemonics and placards are one way to avoid prospective memory errors (Loft, 2014; Stein, 1991). Using free text to jot down notes is another option. Memory aids must be effective. A good example from the video is that of holding a strip in hand as a reminder when there is a vehicle inspecting the runway. There is a growing interest in having the system alert and warn if an action is overdue. The sophistication available today makes it possible to code rules into the system and have it warn the controller. However, this may lead to the same type of over dependence on automation and sense of complacency that we find occur in pilots.

References
Federal Aviation Administration. (2015, September 02). Retrieved April 25, 2017, from https://www.faa.gov/tv/?mediaId=1151 (Links to an external site.)
Federal Aviation Administration. (2015, September 02). Retrieved April 25, 2017, from https://www.faa.gov/tv/?mediaId=1152 (Links to an external site.)
Loft, S. (2014). Applying psychological science to examine prospective memory in simulated air traffic control. Current Directions in Psychological Science, 23(5), 326-331.
McDaniel, M. A.. & Einstein G. (2007). Prospective Memory. Thousand Oaks: SAGE Publications. Retrieved from https://ebookcentral.proquest.com/lib/erau/detail.action?docID=996509
Shorrock, S. T. (2005). Errors of memory in air traffic control. Safety science, 43(8), 571-588.
Stein, E. S., & Federal Aviation Administration Technical Center (U.S.). (1991). Air traffic controller memory: A field survey. (). Springfield, Va;Atlantic City International Airport, N.J;: Federal Aviation Administration Technical Center.
Sternberg, R. J., & Sternberg, K. (2016). Cognitive psychology. Nelson Education.
Vortac, O. U., Edwards, M. B., & Manning, C. A. (1995). Functions of external cues in prospective memory. Memory, 3(2), 201-219.

Aviation Human Factors: Communication to Action

Words spoken or written, absolutely have a deep impact on an audience. The “It’s a Beautiful Day, and I Can’t See It” video is a testament to this reality of life. Language is a powerful tool, and even unspoken words can elicit an emotional response from others.

All action follows perception. In the video, the same message rewritten a different way had a totally different response. The fact that different words caused different response indicates that beyond triggering action, the human brain develops some form of visualization when presented with words. Such visualization triggers emotions. Emotions supplement the action. While the basic action of giving to the blind man remained the same, the quantum of giving was driven by the emotion that was generated by the newly stated signboard.

The first step in human information processing is perception. The process of receipt allows the brain to perform other actions thereafter. So if the perception is formed wrong, all other actions thereafter will also be wrong. In the context of ATC human factors, this is critical to understand. It is for this reason that pilots and controllers speak standard phraseology. Certain terms are exclusively maintained within such standard phraseology to drive certain perceptions followed thereafter by a specific set of actions. For example, an ‘emergency’ call is meant to drive certain actions.

Despite this, mis-perception (and hence incorrect, inaccurate follow through) can be caused due to many reasons. One such reason can be premeditated expectations on the part of the recipient. There are times when a listener is expecting a certain input and regardless of what the speaker says, the listener tends to “hear what she/he expected to hear”. For example, in a recent Flying magazine article, a pilot continued his approach despite the controller asking him to go-around. This is partly because the pilot had a deep set intention to complete his approach and land. In another such article, the pilot made a left 360 despite the controller asking him explicitly to make a right turn. Comfort with a left turn or a premeditated thought, or prior experience at that airport caused him to make a left turn this time. Other factors may play a role. For example, a pilot gets a clearance. It contains an intersection that’s not on the SID. A sense of intimidation can cause a pilot not to ask for clarification. This can lead to issues once in flight. In the case of Avianca 52, the simple use of the ‘emergency’ word may have saved the situation. That term sets a perception. The term “caution” in ATC is meant to drive additional care on the part of the pilot.

So as can be seen the use of (or the lack of use of) certain phrases is very important in the ATC context. On the other hand, the use of non-standard language can be equally damaging. Using non-standard terms dilutes the purpose for which they are meant for. Crisp, succinct use of language is very important in certain operational contexts. Often in un-towered airports, pilots use the CTAF frequency for general talk. One in a while that may be okay but such use dilutes the use of that frequency for more important safety calls.

Communication, perception and action are tightly connected. Words affect perception and perception affects action.

CJ

Aviation and Automation

Automation has eased workload on the flightdeck but, in turn, has also become a source of increased cognitive load on pilots (Salas & Maurino, 2010). Coherence has emerged as a necessary competency for modern day pilots. In order to mitigate surprises, pilots need to carry mental models of underlying systems and plausible use scenarios (Sherry et al., 2001). Coherence techniques can be enabled (or impeded) by a top-down human influence known as ‘Attention’ (Gibb, Gray & Scharff, 2010). Collectively, these expectations are onerous and it is important to ask whether the human mind can truly live up to them. This question is even more important given the levels of automation complexity in modern day aircraft.

One of the highlights of this week’s readings was the aspect of ‘coherence’ (Salas & Maurino, 2010). For coherence to be effective, pilots need to have a deep understanding of the underlying logic, systems and automation impacts. The cognitive load has grown significantly over the years and continues to grow even faster today. While it is possible to acquire and display a lot more data in the form of meaningful information on extra-rich customizable displays, an important consideration would be to understand at what point this reaches practical human limits.

In the end, there is no limit on information that can be provided or should be assimilated by the crew. What matters is how much can be meaningfully assimilated in limited amounts of time (many times minutes or seconds) and most importantly, acted upon to achieve an outcome.

Information overload occurs frequently and very rapidly. My humble observation is that a few different visual and aural call-outs occurring simultaneously (example: a GPWS callout and a TCAS alert) are enough to cause overload in an otherwise quiet flightdeck. If they occur to be in conflict, its worse. With rising stress levels, saturation occurs faster (Salas & Maurino, 2010). The ability to filter, and hone in, on important elements of information being presented is the answer to avoiding overwhelm. I believe that this ability is a function of two things – a) experience and b) personality.

I was reading the September 2015 issue of the Flying Magazine on my way back from a business trip recently. Les Abend, a 777 captain, who features a regular section in the magazine has an interesting article on simulators in the September edition. In fact, he specifically calls out to the evolving role of Human Factors in aviation. He also alludes to the topic of automation diluting core flying skills. Interesting read.

References
Abend, L. (2015, 09). IT’S NOT JUST ABOUT THE SIMULATOR. Flying, 142, 84-84,86. Retrieved from http://search.proquest.com.ezproxy.libproxy.db.erau.edu/docview/1704438154?accountid=27203
Dunwoody, P. T. (2009). Introduction to the special issue: Coherence and correspondence in judgment and decision making. Judgment and Decision Making, 4(2), 113. Retrieved from http://search.proquest.com.ezproxy.libproxy.db.erau.edu/docview/1011289242?accountid=27203
Foster, Jessica (2015, October 21). https://erau.instructure.com/courses/23563/discussion_topics/200361
Gibb, R., Gray, R., & Scharff, L. (2010). Aviation Visual Perception : Research Misperception and Mishaps. Farnham, Surrey, GBR: Ashgate Publishing Group. Retrieved from http://www.ebrary.com (Links to an external site.)
Ledesma, Julio. (2015, October 19). Message posted to https://erau.instructure.com/courses/23563/discussion_topics/200361
Mosier, K., Sethi, N., McCauley, S., Khoo, L., Richards, J., Lyall, E.. . Hecht, S. (2003). Factors impacting coherence in the automated cockpit. Human Factors and Ergonomics Society Annual Meeting Proceedings, 47(1), 31-31.
Salas, E., Jentsch, F., & Maurino, D. (Eds.). (2010). Human factors in aviation. Academic Press.
Sherry, L., Feary, M., Polson, P., & Palmer, E. (2001). What’s it doing now? Taking the covers off autopilot behavior. In Proceedings of the 11th International Symposium on Aviation Psychology (pp. 1-6).